Interaction of intracellular ion buffering with transmembrane-coupled ion transport
نویسندگان
چکیده
The role of the Na/Ca exchanger in the control of cellular excitability and tension development is a subject of current interest in cardiac physiology. It has been suggested that this coupled transporter is responsible for rapid changes in intracellular calcium activity during single beats, generation of plateau currents, which control action potential duration, and control of intracellular sodium during Na/K pump suppression, which may occur during terminal states of ischemia. The actual behavior of this exchanger is likely to be complex for several reasons. First, the exchanger transports two ionic species and thus its instantaneous flux rate depends on both intracellular sodium and calcium activity. Secondly, the alteration in intracellular calcium activity, which is caused by a given transmembrane calcium flux, and which controls the subsequent exchanger rate, is a complex function of available intracellular calcium buffering. The buffers convert the ongoing transmembrane calcium fluxes into changes in activity that are a small and variable fraction of the change in total calcium concentration. Using a number of simple assumptions, we model changes in intracellular calcium and sodium concentration under the influence of Na/Ca exchange, Na/K ATPase and Ca-ATPase pumps, and passive sodium and calcium currents during periods of suppression and reactivation of the Na/K ATPase pump. The goal is to see whether and to what extent general notions of the role of the Na/Ca exchanger used in planning and interpreting experimental studies are consistent with its function as derived from current mechanistic assumptions about the exchanger. We find, for example, that based on even very high estimates of intracellular calcium buffering, it is unlikely that Na/Ca exchange alone can control intracellular sodium during prolonged Na/K pump blockade. It is also shown that Na/Ca exchange can contaminate measurements of Na/K pump currents under a variety of experimental conditions. The way in which these and other functions are affected by the dissociation constants and total capacity of the intracellular calcium buffers are also explored in detail.
منابع مشابه
Identification of a potential receptor that couples ion transport to protein kinase activity.
In our previous studies, we have demonstrated that the Src-coupled α1 Na/K-ATPase works as a receptor for cardiotonic steroids, such as ouabain, to regulate cellular protein kinase cascades. Here, we explore further the structural determinants of the interaction between the α1 Na/K-ATPase and Src and demonstrate that the Src-coupled α1 Na/K-ATPase allows the cell to decode the transmembrane tra...
متن کاملA theory of plasma membrane calcium pump stimulation and activity.
The ATP-driven Plasma Membrane Calcium pump or Ca(2+)-ATPase (PMCA) is characterized by a high affinity for calcium and a low transport rate compared to other transmembrane calcium transport proteins. It plays a crucial role for calcium extrusion from cells. Calmodulin is an intracellular calcium buffering protein which is capable in its Ca(2+) liganded form of stimulating the PMCA by increasin...
متن کاملIon Motive ATPases: V- and P-type ATPases
Biological membranes are composed of phospholipid bilayers and mark the boundaries between the cell or organelle and its exterior. There is little, if any, free diffusion of ions or hydrophilic solutes across phospholipid bilayers. Thus, to enable the cell to control the composition of its intracellular environment, nature has evolved membrane proteins that form specialized pathways across them...
متن کاملMetamorphosis of research on ion-coupled metabolite transport.
A defining moment in the history of active transport research came in August 1960, in a symposium at the Czeckoslovak Academy of Sciences, which became known among membrane biologists as the Prague Symposium (Kleinzeller and Kotyk, 1961). By that date, the enzymatic nature of sodium transport in animal cells had been demonstrated (Skou, 1957) and a generalized concept of transport-related, vect...
متن کاملIon homeostasis, channels, and transporters: an update on cellular mechanisms.
The steady-state maintenance of highly asymmetric concentrations of the major inorganic cations and anions is a major function of both plasma membranes and the membranes of intracellular organelles. Homeostatic regulation of these ionic gradients is critical for most functions. Due to their charge, the movements of ions across biological membranes necessarily involves facilitation by intrinsic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 95 شماره
صفحات -
تاریخ انتشار 1990